

CONTRÔLE SUR LE POIDS ET LA MASSE

Exercice 1

Des boîtes de médicaments sont livrées par cartons. Chaque boîte a une masse de 25 g et un carton contient 40 boîtes. La masse du carton vide est égale à 100 g.

- 1) Calculer, en kilogramme, la masse de l'ensemble carton-boîtes.
- 2) Calculer, en newton, la valeur du poids \vec{P} de l'ensemble carton-boîtes. Prendre g=10~N/kg
- 3) Compléter le tableau des caractéristiques suivant et représenter le poids \overrightarrow{P} sur le schéma ci-dessous :

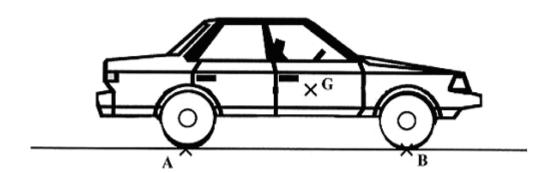
Caractéristiques		Droite d'action	Sens	Valeur ou Intensité (en N)
Poids de l'ensemble (carton-boîtes)	G			

+ **G**

Unité graphique 1 cm représente 1 N

Exercice 2

Une voiture de masse 1 000 kg roule à la vitesse de 108 km/h soit 30 m/s.


- 1) Calculer l'intensité (valeur) du poids \overrightarrow{P} de cette voiture (on donne g = 9,8 N/kg)
- 2) Donner les caractéristiques du poids \vec{P} dans le tableau ci-dessous.

Force	Point d'application	Droite d'action	sens	Intensité (valeur) en N
\overrightarrow{P}				

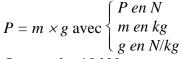
3) Représenter \overrightarrow{P} sur le dessin si sa valeur est de 9 800 N. (échelle : 1 cm pour 2 450 N)

On note:

Le point G est le centre de gravité de la voiture. Les points A et B sont les points de contact des pneus sur le sol.

Exercice 3

Un camion citerne souffleur qui livre les granulés a une masse m de 18 tonnes.


G est le centre de gravité du camion.

1) Calculer, en N, la valeur P du poids du camion.

Donner le détail des calculs.

On rappelle:

$$P = m \times g \text{ avec } \begin{cases} P \text{ en } N \\ m \text{ en } kg \\ g \text{ en } N/kg \end{cases}$$

On prendra 10 N/kg comme valeur approchée de g.

2) Compléter le tableau des caractéristiques du poids.

Action mécanique	Point d'application	direction	sens	Valeur (N)	Force
Poids				180 000	\overrightarrow{P}

(sol horizontal)

3) Représenter la force \overrightarrow{P} correspondant au poids du camion sur la figure ci-dessous. Unité graphique : 1 cm représente 40 000 N

(D'après sujet de CAP Secteur 1 Session 2006)