

CONTRÔLE SUR LES MOLÉCULES

Exercice 1

Donner le nom et le nombre des atomes présents dans la molécule de Fe₂O₃.

(D'après sujet de CAP Secteur 3 Session juin 1999)

Exercice 2

- 1) Indiquer le nom de la molécule dont la formule brute est H_2O .
- 2) Calculer la masse molaire de la molécule H₂O, en vous aidant du tableau ci-dessous :

nom	symbole	masse molaire
nickel	Ni	59 g/mol
soufre	S	32 g/mol
oxygène	0	16 g/mol
hydrogène	Н	1 g/mol

(D'après sujet de CAP Secteur 2 GGMPF Session juin 2007)

Exercice 3

La glycérine a pour formule chimique C₃H₈O₃.

- 1) Donner le nom et le nombre des éléments chimiques qui composent cette molécule.
- 2) Calculer sa masse molaire moléculaire à l'aide des données ci-dessous.

Données: $M_C = 12g/mol$;

 $M_H = 1g/mol$;

 $M_O = 16g/mol$

(D'après sujet de CAP Secteur 2 Académie de la Martinique Session 2005)

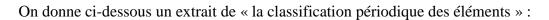
Exercice 4

Le tissu des parapentes est réalisé en polyamide, appelé couramment nylon. Pour fabriquer le nylon, on utilise un produit chimique de formule brute $C_6H_{16}N_2$.

Compléter le tableau suivant.

Symbole de l'élément chimique	Nom de l'élément chimique	Nombre d'atomes composant la molécule
Н		
С		
N		

(D'après sujet de CAP Secteur 1 Session juin 2008)


Contrôle sur les molécules 1/2

Exercice 5

Le chauffage au bois, même s'il est « écologique » provoque l'émission de dioxyde de carbone (CO₂) gaz responsable de l'effet de serre.

H 1,0 g/mol hydrogène							He 4,0 g/mol hélium
3	4	5	6	7	8	9	10
Li	Be	В	C	N	О	F	Ne
6,9 g/mol	9,0 g/mol	10,8 g/mol	12,0 g/mol	14,0 g/mol	16,0 g/mol	19,0 g/mol	20,2 g/mol
lithium	béryllium	bore	carbone	azote	oxygène	fluor	néon
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
23,0 g/mol	24,3 g/mol	27,0 g/mol	28,1 g/mol	31,0 g/mol	32,1 g/mol	35,5 g/mol	39,9 g/mol
sodium	magnésium	aluminium	silicium	phosphore	soufre	chlore	argon

1) En utilisant ce document, compléter le tableau suivant :

Symbole de l'élément	Nom de l'élément	Masse molaire atomique (g/mol)
С		
О		

2) Calculer, en g/mol, la masse molaire moléculaire M du dioxyde de carbone (CO₂).

(D'après sujet de CAP Secteur 1 Session 2006)

Exercice 6

L'assemblage de certains éléments d'une étagère a été réalisé avec une colle à base d'acétate de vinyle. Sa formule chimique brute est $C_4H_6O_2$.

- 1) Nommer les éléments constituant la molécule d'acétate de vinyle.
- 2) Calculer la masse molaire moléculaire de l'acétate de vinyle. Données : M(H) = 1 g/mol, M(C) = 12 g/mol et M(O) = 16 g/mol

(D'après sujet de CAP Secteur 3 Métropole, Réunion, Mayotte Session septembre 2008)

Contrôle sur les molécules 2/2