

PUISSANCE ÉLECTRIQUE

La puissance absorbée est une grandeur obtenue grâce au quotient de l'énergie consommée par le temps de fonctionnement.

 $P = \frac{E}{t}$

La puissance P se mesure en watts (W), l'énergie E, en joules (J), le temps t en secondes (s)

I) Puissances en courant continu

1) Puissance électrique absorbée par un récepteur ou fournie par un générateur

Elle est égale au produit de la tension U à ses bornes et de l'intensité I du courant électrique qui le traverse :

 $P_a = UI$

La puissance P_a se mesure en watts (W), la tension, U en volts (V) et l'intensité I en ampères (A). Dans le cas d'un générateur, il s'agit d'une puissance utile (fournie) : $P_u = UI$

2) Puissance thermique et effet Joule

Tout conducteur parcouru par un courant électrique s'échauffe. Ce dégagement de chaleur est appelé effet Joule.

Cette puissance thermique est donnée par : $P_j = RI^2$

R est la résistance du conducteur en ohms (Ω) .

Selon les dipôles, d'autres pertes (magnétiques, par frottement ou par rayonnement) peuvent apparaître. On les note p.

3) Bilan des puissances

a) Générateurs électrochimiques (piles, accumulateurs)

$$\eta = \frac{U}{E}$$
 $P_{\text{chimique}} = EI$
 $P_{\text{élec}} = UI$

b) **Photopiles (cellules photovoltaïques)**

$$\eta = \frac{U \times I}{P_{ray}}$$

$$P_{\text{rayonante}}$$

$$P_{\text{élec}} = UI$$

c) Génératrice (dynamo)

$$\eta = \frac{U imes I}{P_{mec}}$$
 $P_{ ext{mécanique}}$
 $P_{ ext{elec}} = UI$

Cours sur la puissance électrique

d) Moteur

$$\eta = \frac{P_{\text{mec}}}{U \times I}$$
 $P_{\text{élec}} = UI$
 $P_{\text{mécanique}}$

e) Conducteur ohmique de résistance R

$$\eta = 1$$
 $P_{\text{élec}} = UI$ $P_{j} = RP_{j}$

II) Puissances en régime alternatif monophasé

Pour un récepteur soumis à une tension efficace U (V) et traversé par un courant d'intensité efficace I (A), on définit trois puissances en régime sinusoïdal.

1) Puissance apparente

En régime sinusoïdal, le produit $U \times I$ ne mesure pas toujours la puissance réelle absorbée.

On définit donc la puissance apparente, notée S, comme étant égale au produit $U \times I$.

$$S = UI$$

L'unité de la puissance apparente est le voltampère noté VA.

1 VA est la puissance apparente d'un conducteur soumis à une tension efficace de 1 V et traversé par un courant d'intensité efficace 1 A.

2) Puissance active ou puissance réelle

On appelle facteur de puissance le rapport de la puissance réelle P à la puissance apparente S. On le note f_p .

$$f_p = \frac{P}{S}$$

Le facteur de puissance n'a pas d'unité. On admet qu'il est donné par : $f_p = \cos \varphi$

 φ est appelé déphasage. Il est proportionnel au décalage horaire ente la tension et l'intensité. Il se mesure en radian. Par conséquent, la puissance active (ou réelle) est donnée par :

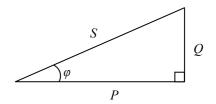
$$P = UI \cos \varphi$$

3) Puissance réactive

La puissance réactive est notée Q et est égale au produit de la puissance apparente par sin φ .

$$Q = S \sin \varphi$$
 ou $Q = UI \sin \varphi$

L'unité de la puissance réactive est le voltampère réactif noté VAR.


4) Relations entre puissance apparente, active et réactive

Du triangle des puissances on déduit :

$$\cos \varphi = \frac{P}{S}$$

$$Q = P \tan \varphi$$

$$S = \sqrt{P^2 + Q^2}$$

5) Théorème de Boucherot

Les puissances actives et réactives absorbées par un groupement de dipôles sont respectivement égales à la somme des puissances actives et réactives absorbées par chaque élément du groupement.

6) Puissances d'un récepteur parfait

Dipôles	Déphasage $\varphi = (\vec{I}, \vec{U})$	Puissance active P en watt (W)	Puissance réactive Q en voltampère réactif (VAR)	Puissance apparente S en voltampère (VA)
Conducteur ohmique de résistance R (Ω)	$\varphi = 0$	UI	0	UI
Bobine parfaite d'inductance L (H)	$\varphi = \frac{\pi}{2}$	0	<i>UI</i> (puissance absorbée par la bobine)	UI
Condensateur parfait de capacité C (F)	$\varphi = -\frac{\pi}{2}$	0	– UI (puissance absorbée par le réseau)	UI

III) Puissances en régime sinusoïdal triphasé équilibré

U: tension efficace composée.

I : intensité efficace du courant de ligne.

La puissance active est donnée par : $P = UI\sqrt{3}\cos\varphi$

La puissance réactive est donnée par : $S = UI\sqrt{3}\sin\varphi$

La puissance apparente est donnée par : $S = UI\sqrt{3}$

Pour trois éléments identiques soumis au même réseau, les puissances sont trois fois plus grandes pour le couplage triangle que pour le couplage étoile.

La relation $S^2 = P^2 + Q^2$ reste toujours vraie.