

DEVOIR SUR LES SUITES NUMÉRIQUES

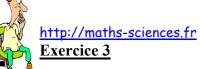
Exercice 1

Une entreprise produit des tables de cuisson. On admet que les productions annuelles des premières années sont les premiers termes d'une suite géométrique de raison q.

Ainsi, en 1998, elle a produit $u_1 = 10\ 000$. En 1999, elle en a produit $u_2 = 10\ 000 \times q$. En 2000, elle en a produit $u_3 = 10\ 000 \times q^2$.

1) Sachant que le nombre total de tables produites pendant ces trois années est : $u_1 + u_2 + u_3 = 31525$, démontrer que :

$$q^2 + q - 2,1525 = 0$$


- 2) Résoudre l'équation du second degré : $q^2 + q 2,1525 = 0$. En déduire la valeur de la raison q de la suite géométrique ci-dessus.
- 3) Calculer u_2 et u_3 . En déduire le pourcentage d'augmentation de la production en 2000 par rapport à la production en 1999.
- 4) En considérant que la production augmente avec le même pourcentage de 2000 à 2001, calculer arrondi à l'unité, le nombre de tables de cuisson qui seront produites en 2001.

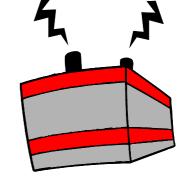
(D'après sujet de Bac Pro M.A.E.N.C. Session septembre 2001)


Exercice 2

Un artisan achète un matériel qui coûte 168 000 €. Les valeurs de ce matériel, après amortissement annuel forment une suite arithmétique.

- le premier terme u_1 = 168 000 € correspond à la valeur au cours de la première année,
- le deuxième terme u_2 = 154 560 € correspond à la valeur au cours de la deuxième année.
- 1) Déterminer la raison r de la suite.
- 2) Calculer l'année n au cours de laquelle $u_n = 0$
- (D'après Bac Pro Artisanat et métiers d'art option vêtements et accessoires de mode septembre 1998)

Une société de production d'accessoires automobiles décide d'offrir à chacun de ses clients un porte-clé en forme de batterie. Elle commande quatre modèles de tailles différentes, T_1 pour la plus petite, T_2 , T_3 et T_4 pour la plus grande. Chaque batterie est assimilée à un parallélépipède rectangle dont les dimensions, L, ℓ et h sont indiqués sur la figure ci-contre.


On note L_1 , L_2 , L_3 et L_4 les mesures respectives des longueurs des quatre modèles. La longueur du plus petit modèle est $L_1 = 15$ mm.

Les quatre longueurs sont les termes d'une suite géométrique de raison 1,2.

- 1) a) Vérifier que L_2 = 18 mm.
- b) Calculer L_3 et L_4 à 0,1 mm près.
- c) Écrire la relation liant L_4 et L_1 .
- d) Déterminer à 0,01 près le rapport entre les longueurs du plus grand et du plus petit des modèles.
- 2) Les autres dimensions des batteries suivent la même progression géométrique de raison 1,2. Calculer à 0,1 près :
- a) ℓ_4 sachant que $\ell_1 = 6$ mm.
- b) h_1 puis h_4 sachant que $h_2 = 12$ mm.
- c) Calculer le volume du plus grand modèle de batterie. Ce volume sera exprimé en cm³ à 10⁻¹ près.

La société décide de commander 10 000 porte-clés. Le nombre de modèles de la petite taille est n_1 ; n_2 , n_3 et n_4 , sont les nombres de modèles des autres tailles. n_1 , n_2 , n_3 et n_4 sont, dans cet ordre, quatre termes d'une suite arithmétique de raison -400.

- 3) Exprimer n_4 en fonction de n_1 .
- 4) Exprimer $S_4 = n_1 + n_2 + n_3 + n_4$
- a) en fonction de n_1 et n_4 .
- b) en fonction, de n_1 seulement.
- 5) a) Calculer n_1 .
- b) Quel est le nombre de batteries de chaque modèle ?

(D'après sujet de Bac Pro Maintenance automobile Session septembre 2001)