

DEVOIR SUR L'APPROXIMATION D'UN SIGNAL PÉRIODIQUE

Exercice 1

On considère la fonction f définie, pour tout nombre réel x, par $f(x) = \pi x^2 + 8x + \frac{\pi^3}{6}$.

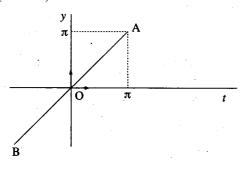
- 1) On note f la fonction dérivée de la fonction f. Exprimer, pour tout nombre réel x, f'(x).
- 2) Résoudre dans \mathbb{R} l'équation, d'inconnue x, $2\pi x + 8 = 0$.
- 3) Compléter le tableau suivant :

x	-∞	$-\frac{4}{\pi}$	+∞
Signe $\operatorname{de} f'(x)$		0	
Sens de variation de la fonction f			

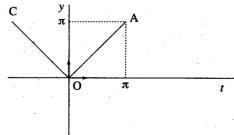
4) Indiquer quelle est valeur (exacte) de x pour laquelle la valeur de f(x) est minimale.

Exercice 2

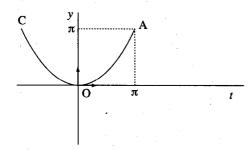
Le signal u est un signal pair, périodique de période 2π tel que $u(\pi) = \pi$. Ce signal, considéré sur l'intervalle $[-\pi; \pi]$, a pour représentation, dans le plan rapporté au repère (Ot, Oy), l'un des trois graphiques présentés ci-dessous.



Graphique n° I: il est constitué par le segment de droite [AB] où A est le point de coordonnées $(\pi; \pi)$ et B le point de coordonnées $(-\pi; -\pi)$.



Graphique n° 2 : il est constitué par la réunion des segments de droite [OA] et [OC] où A est le point de coordonnées $(\pi;\pi)$ et C le point de coordonnées $(-\pi;\pi)$.



Graphique n° 3 : c'est la représentation graphique dans le plan rapporté au repère (Ot, Oy) de la fonction définie sur

$$\left[-\pi ; \pi\right] \text{ par } t \mapsto \frac{t^2}{\pi}.$$

Parmi les trois graphiques précédents, indiquer, en justifiant la réponse donnée, ceux qui sont susceptibles de représenter, dans le plan rapporté au repère (Ot, Oy), le signal u considéré sur l'intervalle $[-\pi; \pi]$.

Pour toute la suite de l'exercice (parties B, C, D), on admet que la représentation, dans le plan rapporté au repère (Ot, Oy), du signal u considéré sur l'intervalle $[-\pi; \pi]$ est le graphique numéro 2.

Partie B

- 1) On considère le graphique n°2 précédent.
- a) Calculer le coefficient directeur de la droite (OA).
- b) Déterminer une équation de la droite (OA).
- 2) a) Exprimer, pour tout nombre réel t de l'intervalle $[0; \pi]$, u(t) en fonction de t.
- b) Compléter le graphique numéro 2 de sorte que, dans le plan rapporté au repère (Ot, Oy), il représente le signal u considéré sur l'intervalle $[-\pi; 3\pi]$.
- 3) La valeur moyenne u du signal u sur l'intervalle $\left[-\pi; \pi\right]$ est égale à $\frac{1}{2\pi} \int_{-\pi}^{\pi} u(t)dt$.
- a) Hachurer sur le graphique numéro 2, la portion du plan dont l'aire, exprimée en unités d'aire, est égale à $\int_{0}^{\pi} u(t)dt$.
- b) Vérifier, en utilisant le résultat précédent, que $u = \frac{\pi}{2}$.
- 4) On appelle énergie transportée par le signal u sur l'intervalle $\left[-\pi ; \pi\right]$, le nombre E(u) tel que: $E(u) = \int_{-\pi}^{\pi} u(t)dt$.
- a) Parmi les deux propositions suivantes, indiquer celle qui est vraie ; justifier la réponse donnée.

Proposition $n^{\circ} 1$ « Pour tout nombre réel t de l'intervalle $[-\pi; 0]$, u(t) = t ». Proposition $n^{\circ} 2$ « Pour tout nombre réel t de l'intervalle $[-\pi; 0]$, u(t) = -t ».

- b) Vérifier que $E(u) = \int_{-\pi}^{\pi} t^2 dt$.
- c) Donner une fonction primitive de la fonction définie sur \mathbb{R} par $t \mapsto t^2$.
- d) Calculer la valeur exacte de E(u).

Partie C

On considère le signal polynôme trigonométrique de Fourier d'ordre 1 approximant le signal u. Ce signal, noté V_0 , est le signal défini, pour tout nombre réel t, par $V_0 = \frac{\pi}{2} - \frac{4}{\pi} \cos t$.

- 1) Vérifier que le signal V_0 est pair et périodique de période 2π .
- 2) La valeur moyenne $\overline{V_0}$ du signal V_0 sur l'intervalle $\left[-\pi ; \pi\right]$ est égale à $\frac{1}{2\pi} \int_{-\pi}^{\pi} V_0(t) dt$

En utilisant l'égalité $\int_{-\pi}^{\pi} \cos(t) dt = 0$, calculer la valeur moyenne de V_0 sur l'intervalle $[-\pi; \pi]$.

- 3) Les nombres a_0 et a_1 sont des nombres réels. L'énergie transportée sur l'intervalle $\left[-\pi ; \pi\right]$ par le signal défini sur \mathbb{R} par $t\mapsto a_0+a_1\cos t$ est égale, d'après la relation de Parseval, à $2\pi\left(a_0^2+\frac{a_1^2}{2}\right)$.
- a) Calculer la valeur exacte de l'énergie $E(V_0)$ transportée par le signal V_0 sur l'intervalle $[-\pi; \pi]$.
- b) Calculer la valeur arrondie au centième de $\frac{E(V_0)}{E(u)}$ où E(u) est le nombre défini à la partie B question 4.

Partie D

Le nombre k étant un nombre réel, on considère le signal v tel que, pour tout nombre réel t, $v(t) = \frac{\pi}{2} + k\cos t$

- 1) On note E(v) l'énergie transportée par le signal v sur l'intervalle $[-\pi; \pi]$.
- a) En utilisant le rappel effectué à la *partie C* question 3 (relation de Parseval), vérifier que $E(v) = \frac{\pi(\pi^2 + 2k^2)}{2}$
- b) Déterminer les valeurs de k pour lesquelles $\frac{E(v)}{E(u)} = 1$ ou encore E(v) = E(u). (E(u) est le nombre défini à la *partie B* question 4).
- 2) L'énergie E(u-v) transportée par le signal u-v sur l'intervalle $\left[-\pi;\pi\right]$ est égale à $\int_{-\pi}^{\pi} \left(u(t)-v(t)\right)^2 dt$. Un calcul, conduit à l'aide d'un logiciel de calcul formel, permet d'écrire que $E\left(u-v\right)=\pi k^2+8k+\frac{\pi^3}{6}$.

Indiquer, en utilisant les résultats obtenus à l'exercice 1, pour quelle valeur de k l'énergie E(u-v) est minimale.

(D'après sujet de Bac Pro M.A.V.E.L.E.C. session 2000)