

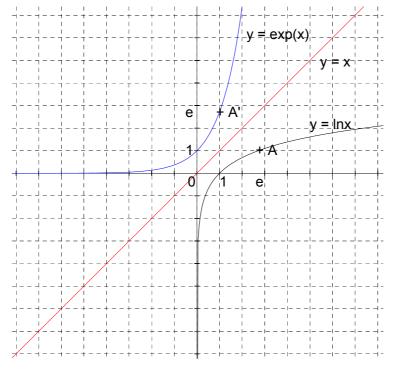
FONCTIONS EXPONENTIELLES

I) La fonction exponentielle

1) Définition

On appelle fonction exponentielle, la fonction qui à x fait correspondre e^x soit $f: x \mapsto e^x$ avec $\ln e = 1$, la valeur approchée de e étant 2.71. Si $e^x = y$, alors $x = \ln y$, pour tout x et tout y > 0.

2) <u>Dérivée</u>


$$\operatorname{Si} f(x) = e^x \operatorname{alors} f'(x) = e^x$$
. $\operatorname{Si} f(x) = e^{ax+b}$, $\operatorname{alors} f'(x) = a \times e^{ax+b}$.

3) Représentation graphique

On peut dresser le tableau de variation de la fonction $f: x \mapsto e^x$

x	-∞ +∞
Signe de $(e^x)' = e^x$	+
Sens de variation de la fonction $f: x \mapsto e^x$	

La représentation graphique de la fonction exponentielle peut se déduire de la représentation graphique de la fonction logarithme népérien par réflexion par rapport à la droite d'équation y = x dans un repère orthonormal.

Les points A(e;1) et A'(1;e) sont symétriques par rapport à la droite d'équation y = x

4) Propriétés

$$\bullet e^{x+y} = e^x \times e^y$$

$$\checkmark e^{x-y} = \frac{e^x}{e^y}$$

$$\checkmark \left(e^x\right)^y = e^{x \times y}$$

II) Fonction $x \mapsto a^x$

1) Définition

La fonction qui à tout réel x associe a^x , $a \ne 1$, est appelée fonction exponentielle à base a: $\exp_a(x) = a^x$.

Remarque : $\exp(x) = e^x$ est la fonction exponentielle à base e. $\exp_{10}(x) = 10^x$ est la fonction exponentielle à base 10.

2) Propriétés

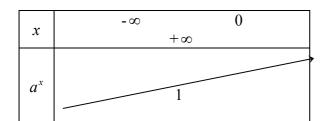
a est un réel positif : \checkmark $a^x = e^{x \ln a}$

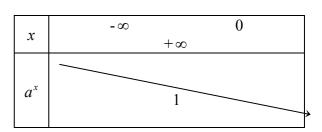
$$a^{x} = e^{x + a}$$

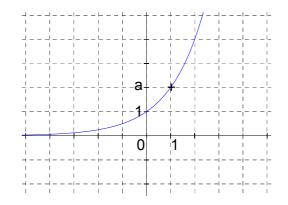
$$a^{-x} = \frac{1}{a^{x}}$$

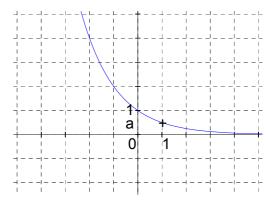
$$a^x \times a^y = a^{x+y}$$

3) Représentation graphique


Pour tout x réel, $a^x > 0$; $a^0 = 1$


La fonction $x \mapsto a^x$ est croissante. décroissante.


0<a<1


Pour tout x réel, $a^x > 0$; $a^0 = 1$

La fonction $x \mapsto a^x \operatorname{est}$

III) Étude de la fonction $f: x \mapsto 10^x$

1) Définition

Il existe une fonction définie sur \mathbb{R} dont les images sont dans]0; $+\infty[$ appelée fonction exponentielle de base 10 et notée $x\mapsto 10^x$ telle que pour tout réel x: $\log(10^x) = x$ et pour tout réel positif x: $10^{\log x} = x$

2) Propriétés

Pour tout réel *a* et pour tout réel *b* : $10^a \times 10^b = 10^{a+b}$; $\left(10^a\right)^b = 10^{a \times b}$; $\frac{10^a}{10^b} = 10^{a-b}$