

COMMENT PASSER DE LA VITESSE DES ROUES À CELLE DE LA VOITURE ?

I) Mouvement de rotation uniforme

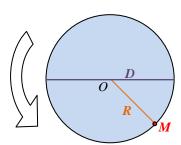
Un objet effectue un mouvement de **rotation uniforme** autour d'un axe lorsque :

- la trajectoire de chacun de ses points est un cercle centré sur l'axe de rotation et situé dans un plan perpendiculaire à cet axe.
- la **fréquence de rotation** est constante au cours du temps.

Le point *M* décrit un cercle pendant la durée *T*.

La fréquence de rotation n est le nombre de tours effectués en une seconde. Elle s'exprime en tour par seconde (tr/s). Elle s'obtient en calculant l'inverse de la période T, durée nécessaire pour faire un tour. La période s'exprime en seconde (s).

n : fréquence en tr/s


$$n = \frac{1}{T}$$

T: période en s

On mesure la fréquence de rotation à l'aide d'un tachymètre. Elle est souvent exprimée en tour par minute (tr/min) et appelée vitesse de rotation.

II) Relation entre vitesse linéaire et fréquence de rotation

Pendant une durée T, le point M parcourt la distance $2\pi R$ ou encore πD .

D : diamètre du cercle R: rayon du cercle

Sa vitesse linéaire est : v =

$$v = \frac{2\pi R}{T}$$
 ou encore $v = \frac{1}{T}$

Avec v en m/s; R en m; D en m; T en s.

En utilisant la fréquence de rotation : $|v = 2\pi Rn|$ ou encore $|v = \pi Dn|$

$$v = 2\pi Rn$$
 ou encore $v = \pi Dn$

Avec v en m/s; R en m; D en m; n en (tr/s).

III) Transmission du mouvement circulaire

1) Transmission par poulies et courroie

Vitesse linéaire de la poulie 1 : $v_1 = \pi \times D_1 \times n_1$

Vitesse linéaire de la poulie 2 : $v_2 = \pi \times D_2 \times n_2$

 n_1 : fréquence de rotation D_1 : diamètre D_2

 n_2 : fréquence de rotation

 D_2 : diamètre

 $\frac{n_1}{n_2} = \frac{D_2}{D_1}$

En supposant qu'il n'y ait pas de glissement de la courroie :

$$v_1 = v_2$$
 soit $\pi \times D_1 \times n_1 = \pi \times D_2 \times n_2$ d'où

Le rapport des vitesses de rotation de deux poulies est égal au rapport inverse de leurs diamètres.

On a aussi la relation : $n_1D_1 = n_2D_2$

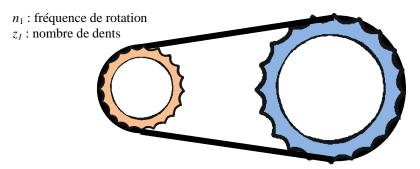
2) Transmission par engrenages

D: diamètre primitif

Z : nombre de dents de l'engrenage.

m: module de l'engrenage $m = \frac{D}{7}$

 n_1 : fréquence de rotation z_1 : nombre de dents


 n_2 : fréquence de rotation

 z_2 : nombre de dents

Le module est le même pour toutes les roues de l'engrenage.

$$n_1 Z_1 = n_2 Z_2$$

3) Transmission par roues dentées et chaîne

 n_2 : fréquence de rotation z_2 : nombre de dents

$$n_1 Z_1 = n_2 Z_2$$