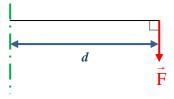


COMMENT SOULEVER FACILEMENT UN OBJET?

I) Moment d'une force par rapport a un axe

Deux valeurs facilitent l'efficacité du serrage d'un écrou :

- la valeur de la force exercée
- la valeur du bras de levier

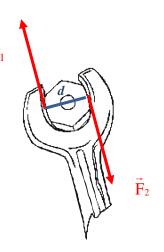


Le **moment d'une force** permet de mesurer l'efficacité d'une force sur la rotation d'un objet. La formule du moment d'une force tient compte de ces deux valeurs :

$$M_{\vec{F}/\Delta} = F \times d$$

F: valeur de la force (N)
d: distance (m)

 $M_{\vec{F}/\Delta}$: moment de \vec{F} par rapport à Δ (N.m)

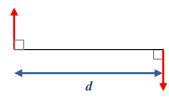

II) Couple de forces – Moment d'un couple de forces

1) Définition d'un couple de forces

Un **couple de forces** $(\vec{F}_1; \vec{F}_2)$ est constitué de deux forces :

- de même valeur $F_1 = F_2 = F$
- de sens opposés
- de droites d'action parallèles et distinctes.

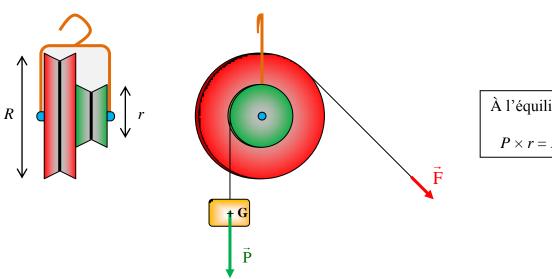
d est appelé « bras de levier » du couple.



2) Moment d'un couple de forces

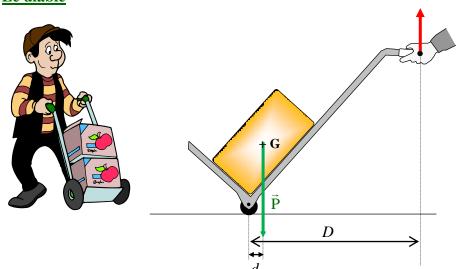
Le moment d'un couple de forces $(\vec{F}_1; \vec{F}_2)$ est égal au produit de la distance d séparant leurs droites d'action par la valeur commune F des deux forces.

$$M_{\vec{F}/\Delta} = F \times d$$


F: valeur commune des deux forces (N) d: distance entre les deux droites d'action (m) $M_{\vec{F}/\Delta}$: moment du couple de forces par rapport à Δ (N.m)

III) <u>Inventaire des forces sur un système de levage</u>

Lorsqu'un solide mobile autour d'un axe Δ est en équilibre, la somme des moments des forces qui tendent à le faire tourner dans un sens est égal à la somme des moments des forces qui tendent à le faire tourner dans l'autre sens.


1) La poulie à deux gorges

À l'équilibre :

$$P \times r = F \times R$$

2) <u>Le diable</u>

À l'équilibre :

$$P \times d = F \times D$$