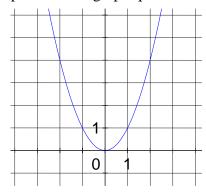


FONCTIONS DE LA FORME kf

I) Fonction carrée

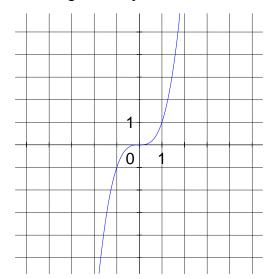
C'est la fonction $f(x) = x^2$. Elle est définie pour tout nombre x. Elle est croissante sur $[0; +\infty[$ et décroissante sur $[-\infty; 0[$. Sa représentation graphique est une parabole.



X	-∞	0	+∞
Sens de variation de la fonction <i>f</i>			*

II) Fonction cube

C'est la fonction $g(x) = x^3$. Elle est définie pour tout nombre x et est croissante sur $[-\infty; +\infty[$. Sa représentation graphique admet l'origine du repère comme centre de symétrie.

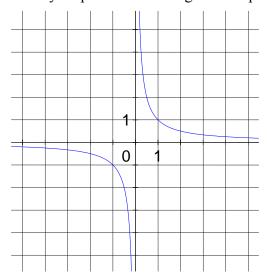


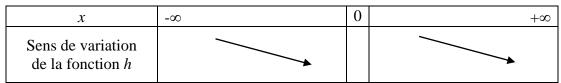
х	-∞	0 +∞
Sens de variation de la fonction <i>g</i>	_	0

III) Fonction inverse

C'est la fonction $h(x) = \frac{1}{x}$. Elle n'est pas définie pour x = 0. Elle est décroissante sur $]-\infty$; 0[et décroissante sur]0; $+\infty[$. Sa représentation graphique est une hyperbole.

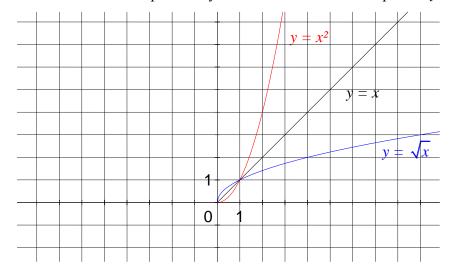
L'hyperbole présente une symétrie ayant pour centre l'origine du repère.





IV) Fonction racine carrée

C'est la fonction $k(x) = \sqrt{x}$. Elle est définie pour $x \ge 0$ et est croissante sur $[0; +\infty[$. Dans un repère orthonormal, sa représentation graphique se déduit de la représentation graphique de la fonction « carrée » par une symétrie d'axe la droite d'équation y = x.



х	0 +∞
Sens de variation de la fonction k	0

V) Fonction de la forme kf (k étant un nombre donné)

On considère une fonction f définie sur un intervalle I.

La fonction kf est une fonction définie sur I qui a le même sens de variation que f si k > 0 et un sens de variation contraire à celui de f si k < 0.