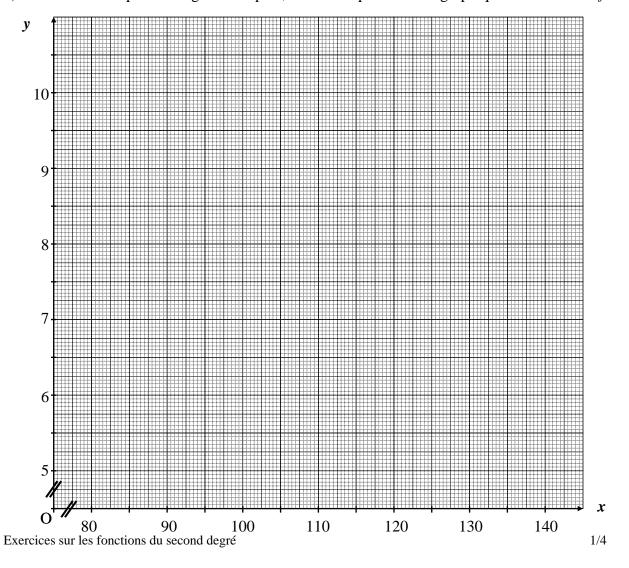


EXERCICES SUR LES FONCTIONS DU SECOND DEGRÉ

Exercice 1

Les documents constructeurs d'une voiture permettent d'estimer le volume d'essence c consommée pour effectuer une distance de $100 \, \mathrm{km}$, en fonction de la vitesse moyenne v.

Pour une vitesse comprise entre 80 km/h et 140 km/h, la formule reliant ces deux grandeurs est : $c = 0.0004v^2 + 2.5$ avec c en litres et v en km/h.

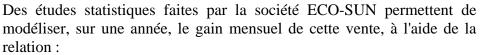

- 1) Calculer la consommation c d'un véhicule roulant à une vitesse moyenne v de 90 km/h. Arrondir le résultat au dixième de litre.
- 2) La fonction f est définie pour x appartenant à l'intervalle [80; 140] par l'expression :

$$f(x) = 0.0004 x^2 + 2.5.$$

a) Compléter le tableau. Arrondir les valeurs au dixième.

vitesse v en km/h	х	80	90	100	110	130	140
consommation c en litres	f(x)			6,5	7,3	9,3	

b) En utilisant le repère orthogonal ci-après, tracer la représentation graphique de la fonction f


- c) Déterminer graphiquement la valeur de x pour laquelle f(x) = 7. Laisser apparents les traits utiles à la lecture.
- d) En déduire la vitesse moyenne *v* correspondant à une consommation de 7 litres de carburant.

(D'après sujet de BEP Secteur 1 Guadeloupe – Guyane – Martinique Session Juin 2009)

Exercice 2

La société ECO-SUN vend des installations de panneaux photovoltaïques pour produire de l'électricité. Le commercial de cette entreprise se rend chez Monsieur Photon afin de finaliser une vente de 22 m² de panneaux.

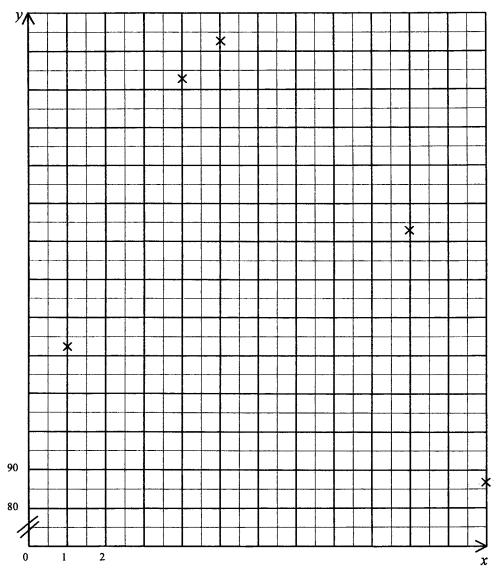
Monsieur Photon a la possibilité de revendre l'électricité produite par ses panneaux photovoltaïques.

$$G(n) = -3.3 n^2 + 39.6 n + 87$$

avec n représentant le rang du mois, sachant que le mois de janvier correspond à n = 1.

On considère la fonction $f(x) = -3.3 x^2 + 39.6 x + 87$ définie sur l'intervalle [1; 12].

1) Compléter le tableau de valeurs.


х	1	2	3	4	5	6	7	8	9	10	11	12
f(x)	123,3			192,6	202,5					153		87

- 2) Résoudre l'équation -6.6 x + 39.6 = 0 permettant de calculer l'abscisse du sommet de la parabole.
- 3) Compléter le tableau de variation.

Х	1	•••••	12
Variation de f			

- 4) Pour quelle valeur de x la fonction f admet-elle un maximum ?
- 5) Représenter graphiquement la fonction f en utilisant le repère suivant.

(D'après sujet de Bac Pro Commerce – Vente – Services Session juin 2009)

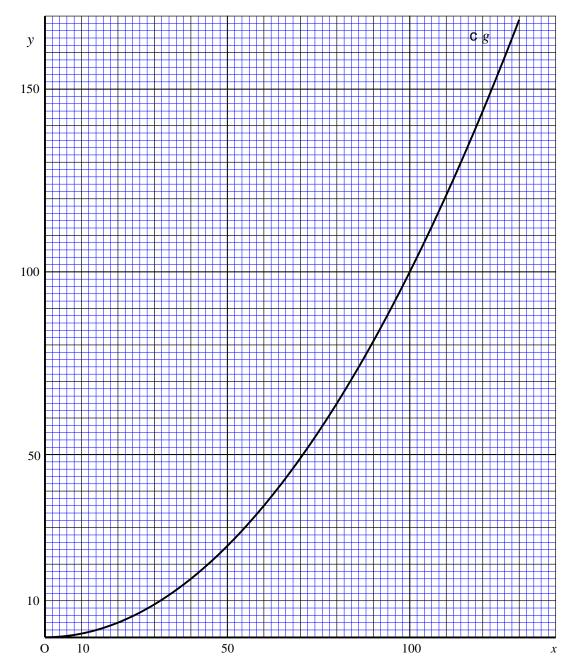
Exercice 3

La distance de freinage d_F (en m) parcourue par un deux roues pendant le temps de freinage est fonction de la vitesse v (en km/h) du deux roues et dépend également de l'état de la chaussée :

• Sur route sèche : $d_F = 0.005v^2$

• Sur route humide : $d_F = 0.01v^2$

1) On modélise cette situation par les fonctions f et g définies sur l'intervalle $[0\,;\,130]$ par :


$$f(x) = 0.005x^2$$
 et $g(x) = 0.01x^2$.

a) Compléter le tableau de valeurs de la fonction f situé ci-dessous.

Vitesse v (km/h)	х	0	10	20	40	60	90	110	130
Distance de freinage d_F (m)	f(x)	0			8		40,5		84,5

b) La courbe représentative de la fonction g est tracée dans le repère suivant. En utilisant le même repère, tracer la courbe représentative de la fonction f.

- 2) Donner le nom des courbes représentatives des fonctions f et g.
- 3) Déterminer graphiquement la distance d_0 de freinage sur route humide lorsque la moto à une vitesse égale à 70 km/h. Laisser apparents les traits utiles à la lecture.
- 4) On souhaite déterminer la vitesse v_0 correspondante à la distance de freinage sur route sèche égale à 70 m.
- a) Déterminer graphiquement la vitesse v_0 à partir de la courbe représentative de la fonction f. Laisser apparents les traits utiles à la lecture
- b) Vérifier ce résultat en résolvant l'équation $0.005x^2 = 70$ sur l'intervalle [0 ; 130]. Arrondir la valeur au dixième.

(D'après sujet de BEP Secteur 3 Nouvelle Calédonie – Wallis et Futuna Session 2008)